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1. Introduction. The maximum likelihood estimates for point

process model have been occasionally used especially for Poisson

model (see e.g. Snyder (1975)). The log likelihood function has

also been used in some cases in a somewhat heuristic manner (see

e.g. Snyder (1975), Vere-Jone(1975)). Although it is expected

that the maximum likelihood estimates possess the usual asymptotic

properties, to the best of our knowledge, there has not been a

rigorous proof for it. In this paper, we use some of the ideas

of Jacod (1975) and Lipster and Shiryayev (1978) on martingale

theory for point processes to derive the log likelihood function,

and we prove under some regularity conditions the asymptotic pro-

perties of the log likelihood and the maximum likelihood estima-

tors. The case of self exciting processes is of great interest

since the log likelihood can be written down easily and hence is

treated in greater detail.

2. The Log Likelihood Function for Point Process.

We shall be concerned with multitype point processes, that is,

point events of r different types randomly occurring along the

real line. This process can be described by a multivariate count-

ing process N(t) = {N1 (t),...,Nr(t)} , t E R, defined on some

probability space (Q,A,P). Here N.(t) - Nj(s) , t > s denotes

the number of point events of type j which occur in (s,t]

By convention N.(0) = 0 . We shall suppose that at each tJ

at most one event regardless of its type can occur. Let At

t 0 be an increasing family of sub-a fields such that N(t)

is A t-measurable, t > 0 . Then (Lipster and Shiryayev (1977),
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p. 239) there is for each j 1,...,r a natural increasing

process Aj (t) , called the compensator of N (t) , relative

to (AtP) such that m.(t) = Nj(t) - Aj(t) t -e 0 is a

At-local martingale. Here we shall be interested only in the

case where the measure dAj(t)dP admits a density X.(t) with

respect to dtdP . The process X. (t) can be chosen to be

At-predictable, that is (t,w) -+ X.(t,w) is measurable with

respect to the a-field generated by all the A t-adaptedpro-

cesses with left continuous sample paths, and is called the

stochastic intensity of the N(t) process. Intuitively l it)

can be interpreted as

(2.1) lim P{ANj(t) = IAtI/At
At+0

where AN(t) = N(t + At) - N(t) . Indeed if tJ i. the time of
n

occurrence of the n-th event of type j after the origin, then

(t A T n ) , t _ 0 is a martingale and so for s > t , A c At

s T

(2.2) E[lIA{Nj(sATJ) - Nj(tAT jn ) } = E{A j dAj(u)}

f

E[l 1 X.(u)]du
ft A {u< } J

n

Heuristically if s = t + At and At is small, then the left

hand side of (2.2) is approximately P(A n {t 5 T n {AN(t)
n

and the right hand side of (2.2) is approximately

E[lA 1 .)(t)]At . Since {Tj < t} E At , we obtain theA {t < - 3n n

interpretation (2.1). Historically (2.1) was proposed as the

definition of the stochastic intensity. This definition requires

the existence of the limit in (2.1) and is equivalent to our

1*
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definition only under some regularity conditions.

If A t = At , the sub a-field generated by N(s) , 0 s ! t

then the stochastic intensity, which we write now X (t) com-

pletely defines the probability distribution of the process (Jacod

(1975), Lipster and Shiryayev (1977), p. 252). Now let ff be the

probability such that the Nj(t) , relative to 7 , are independent

Poisson processes with unit rate. Thus, relative to n , the stoch-

astic intensity of N.(t)~ is one. Observe that the random

measure {j} x (s,t) - f t X (u)du on {l,...,r} x R+  is precisely
s

the dual predictable projection in the sense of Jacod (1975) of the

random measure {j} x (s,t) - Nj(t) - Nj(s) , by the result of

this paper, P is absolutely continuous with respect to w on any

AT, T > 0 , with density

dP T r
exp [f I {Log A (t) dN(t) - Xj(t) dt + dt }]

0 j=l

Let now {P' E 01 be a family of probability distributions on

(SI,A) and let X 6,(t) be the corresponding stochastic intensity

of the N.(t) process. Then the above result shows that the log

likelihood function corresponding to an interval of observation [0,T]

is, up to an additive constant:
T r~(2.3) LT(e) = fT [ {Log X (t) dNj(t) - xe. (t) dt}
0 j=l 'J

Remark

The multitype process is a special case of the marked point

process when the space of the marks is just {l,...,rl There is

no difficulty to write down the log likelihood function for marked

point process. Also, it is not necessary to suppose the existence

of the stochastic intensity to write down the log likelihood func-
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tion; it suffices that the measure dA0  (t) dP0  be absolutely

continuous with respect to some measure dv(t) dP0 , A6,j(t)

being the natural increasing process of Ni(t) relative to At

and to P0 " The special case we considered is convenient for

further developments concerning the asymptotic properties of the

log likelihood function.

3. The Approximate Log Likelihood Function

The considered process is defined on the whole line although only

an observation on [O,T] is available. Denote by X8 , (t) the

stochastic intensity of the N.(t) process relative to P0  and

the sub a-fields At , t c R generated by N(s) , s 5 t Models

of point processes are usually described in terms of

XO(t) = (X8l(t),...,X8r(t)) For example, the self exciting

process introduced by Hawkes (1972) can be defined by

t
(3.1) X0 (t) = ae + f ge(t - s) dN(s)

- CO

where a8  is a constant vector and g0 (.) is some appropriate

matrix function. Thus, it is desirable to obtain the log likeli-

hood function in terms of X (t) We are led to the problem of

computing X0 (t) in terms of X0 ,(t) . Now, from the interpret-

ation (2.1) of X1.(t) one can expect that

X j(t) = Ee{X18,(t)IA in case when X1i(t) is integrable.

The rigorous result is

Theorem 1. Let TJ be the time of occurrence of the n-th event

n

of type j after the origin. Then for almost all t , the random
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variable 1 j} , (t) is P -integrable and
{tt n} ej e _______

{t < TJ ej (t) = Ee[l{t _< tJ}(e,j(t) IAt]

almost surely.

Proof.

From (2.2), we have for all s > 0

n _> E {Nj(s A = fS E [l j}Xj(t)]dt

and hence the function

(t,w) - Xn(t,w) = M (w) Xe, ()
nn

belongs to L (R+ x Q,BR+ U A, dt dPe) . We shall show that

there exists a At-predictable process X n(t) with

Xn(t) = E{Xn (t) At } for almost all t , almost surely. Indeed,

there exists a sequence of simple functions of the form

Xnk(tIW) = 1 k z(k) ( () 1 (k) 1 tk) (t) k = 1 2,M=l m(m-l, Um]' """

which converges in L to Xn For t(k)m  < tt(k) , set

Xn k(t) to be a version of E {z(k) IA } such that the process, m t'

Xn,k(t) has left continuous sample path and is At -

adapted, which is possible because of the martingale property

of the E {z~k)I • t t~k < t - t( k ) " Hence Xnk(t) is

At-predictable.

From

Ixn,k(t) - Ee{Xn(t) lAt}i IEe[{Xn,k(t) - Xn(t)IIAt] I

< EC{ IXn,k(t) - Xn(t) I IAt}



and the fact that X X in L as k cn , we get that

sequence Xn,k I k > 1 is a Cauchy sequence in L and

hence converges to some At-predictable process Xn which

equals {Xnmt } almost surely for almost all t .

Now, from the definition of X (t) and the fact that
n

{< _Jn At ' we have, almost surely

l{t < T E} e IXm(t) I At = Ee{Xn(t)JA t  for m - n
n

and hence there is a At-predictable process X(t) such that

l{ j > t} X(t) = Xn(t) = Ee[l{Ej > tj e~j(t) I At]

n n

for almost all t , almost surely.

We now show that X(t) is -xj(t) . For this let A At

then the right hand side of (2.2) is equal to

E [ lAXn(u) du] = Ee[lA E8 {X (u) I Au}]d u

= f: EOAn (u) } du

t f~n
Ee{IA f X(u) du)

Hence, by (2.2) the process N(t) -f 0 X(u) du, t >_ 0 is a local

martingale, which gives the desired result.

Corollary. Suppose that X ,j(t) is integrable for almost all

t . Then x ,j(t) = Ee{xe'i t)x t almost surely, for almost all

t.

Although the above result orovides a means of computinq X6 (t)
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in terms of X (t) , the actual computation is not easy. So
A

we are led to approximate X (t) by some X (t) which depend

only on N(s) , 0 s ! t . The approximate log likelihood

function is then

T r A A

(3.2) LT(e) = f { I Log A. (t) dNj(t) - Aej(t) dt}
0 j=l

Since T LT () depends essentially on the values of

16 (t) for large t if T is large, we would expect that LT

is a good approximation to LT for large T if %(t) is a

good approximation to Xe(t) for large t But by the corol-

lary of Theorem 1 and the stationarity of N(t)

Eli XO(t) - Xe(t)Ii - 0 as t Therefore one could expect

that LT is good approximation to LT for large T if Xe(t)

is a good approximation to Xe(t) for large t . We will make
A

our assumptions on Xe(t) precise later on.

As example, consider the self exciting process when Xe(t)

is given by (3.1). In order that Xej(t) 0 for all t , we

shall assume that a,,jt 0, gojt(t) 0 for all t . If the

gs,j£ are integrable and N(t) is of stationary increments with

EN. (1) 1,81, < then the integral in (3.1) exists almost

surely. Indeed

E8 {ftg j(t - s) dNk(s)} = ftg (t - s)IJ ds
~00 0 1 J 0 o~

< , go,j(t) dt <+

and hence the integral in the above left hand side is finite almost

surely. As an approximation to X 0 (t) , one might consider

A t
(3.3) X (t M e + f g0 (t - s) dN(s)

0 o
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which is evidently At-measurable and would be a good approx-

imation to X (t) for large t if go(t) 0 sufficiently

fast.

4. Asymptotic Properties of the Approximate Log Likelihood

From now on, we shall suppose that the N(t) process is of

stationary increments and metrically transitive in the sense of

Doob (1953, p. 510). Let 2 be the space of w = (Wl,..., r)

11
where the &. are non-decreasing integral valued functions on

(-o, ) , A the o-field generated by the projections

7st : - (t) - i(s) , s < t , P6  the restriction to A of the

image of P0  by the application N w - N(.) , and Th the

shift operator (Th ) (t) = (t + h) . Then stationarity means

that Th conserves the probability Pe , that is

Pe(T-hA) = P(A) , V A E A , and metric transitivity means that

the invariant sets, that is, those sets A E A for which

T- 1A = A , a.s., have probabilities zero or one. Now, from the
h

fact that N(t) - N(s) = stO N and that Th conserves the prob-

ability P0 , one can show that X0 (t) = Te(t)o N with

(t + h) = A0 (t) o Th Hence if Xe(t) is integrable

T 0(t

lim- fX(t) dt = E{X ( 0 )

almost surely. (see Doob, 1953, p. 515). Here the expectation is

computed with respect to the true probability

We suppose in the sequel that 0 c Rk and X(t) O

, 0(t-
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are twice continuously differentiable with respect to 0

almost surely. We shall use the notation x (1 , 6 2 to

denote the vector and the matrix of first and second deriy-

atives of x08 with respect to e . Let ip(t) be a function

of the X, (u) (t) , i = 1,2 such that 41t) is

integrable. Then by the same argument as above

1 rT(4.1) JO p(t) dt -~ Ei (0) , a. s. (T - oo

In this section, we are interested in the limiting beha-

vior of LT(a) , LM'(0*) i =1,2 as T -~~,0* being

the true value of 0 .We have, omitting the subscript 0
A A

when e = * and putting p (t) Log X0 (t)

din. =dN.(t - X.(t)dt:
3 3

r rT ArT A
(4.2) L T(O) = Y j ,(t MdNi(t) - X.Oj(t)dt}

j=l 0J 'J - 0 o
r rTA
= jIf p0 .j(t)dm.(tM

0 6' (t) i M - $ j(t)}dtI

(1) ~r gT T l(4.3) L4' (0) = IJ~ $(1 ).(t)dN Mt - J0 (t)dt}

= r TC, t) {Xj(t) _-" (t) }dt
j 11 J 0 j j

+ fTj
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(4.4) L (2 ) A (2) t) A (2)(tt,j dt }
L(Tjl~ 0  'J (t)dx6

r rTA(2 A

= J [ 0  8,9(t) {A9(t) - A0 j(t)1dt
j=l j

r A0,j(t)dmj (t) A

1) ()() (t)dt
- 0j e ,j j (dt

In order to use the result (4.1) we are led to replace
A A
X80 j(t) ' ,j(t)'... by X ,j(t) , 4 ej(t) = log Aej(t),....

The following result, which can be easily proved, is quite useful.

Lemma 1. Let Et, xt  be such that ct/xt - 0 as t . Also

let letldp(t) < - and V(T) -

ltt ad T Ixt ld p (t) be bounded where 1

is a non-decreasing function with p(-) = . Then

ij(T)JIo Et dp(t) 4 0 as T

To obtain convergence results for the stochastic integrals

with respect to dmj(t) in (4.2) - (4.4), we will need the follow-

ing result which is of independent interest.

Lemma 2. Let Mt , t - 0 be a locally square integrable martin-

gale with continuous natural increasing process <M>t Let gt

t > 0 be a non-decreasing left continuous function with g. =

such that <M>t = O(g2- ) , > 0 , almost surely as t .

Then MT/g T - 0 almost surely as T .
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Let a >0 be such that ga>0. Let c be an arbi-

trary positive constant. Define the stopping time

T = Inf {t . t _ d <M c}

Set M t = MtAT Iand

t-1 tAT -1
z f g dM =f g dM

t a s a s s

The process Zt, t a is a martingale with natural increasing

process

<Z>t f tAT -2 d<M> ~c t ;>a
t a g

Since EZ 2 c ,t : a , we know (Doob, 1953, p. 354, 361) that

almost surely Z a+ ' _,t , t a , Z.~ exist and Ztis

bounded on any finite interval. Set (k). = a + (T - a) i/k and

write

k

T Z T I [{ (k) - g (k)1 ) ( k) + gt(k) {z(k) -Z (k)1

f ~ dgt + f g(k ) t0 ta

where Z (k) =z (k) g( for t k) < t < tk)

By the Lebesque dominated convergence Theorem and the proper-

ty of stochastic integral, almost surely as k -

fj z (k dgt f~ z g
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and T k)fT fT

fag k) dZ t J 9t dZ t a dMt M MT ~Ma

Therefore

9-1 -1 T

T M Ma T ( g )T al -t -1

a1 g 9- ) .- g-1T (Zt+ - Z 0)dgt

Since g9T as T+0 from Lemmal 1 we get g (MT Ma) +0

and hence g- 1? be 0 ,almost surely as T - 0

Now, we have M t M tfor all t on the set

g-0}= 2 d<M> < c

a'g

2-1

Sic c is arirrwban~M almost surely a

f 9- g2 d<M> 5 < 2(2c

By asumpton M s cst g fora s M b orsm

-2 -2(2-c)

=const. lM> b xdx <

since the image of the measure d<M> s by the application

s -* M is just the Lebesque measure. Hence, almost surely

-22

since g - is bounded on [a,b] .The proof is completed.
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Theorem 2. Suppose that

(i) P{Xi , j (t) _ c} = 0 for some c > 0 (c is

independent of t by stationarity) and ej (t) - 0 ,j (t)

A')(t) - X(i)(t) , i = 1,2 tend to zero almost surely as

t -.

(ii) A 6j(t) is integrable, and ,j(t) and the

elements of 4j) (t)., , (2j (t) are square integrable with
S, j eO,I

respect to the measure X (t)dP..3

Then almost surely as T

T 1 LT(e) E[jI 0 ' j (0)Aj(0) - ,j(0)] = A(D)

T-1 L( I ) (e*) - 0

T-1 L 2 ) (0*) -E{j =I lQj( 1 ) (0)0 (0) -J

Proof

Consider the right hand side of (4.2). By (i)

A A

0e,j(t)Xj(t) - Xeli(t) = e,j(t)Xe,j(t) - Xe0 ,(t) + o(t)

where in this proof o(t) denotes a quantity tending to zero

almost surely as T - . By lemma 1 and the fact that

Oe,j(t)Xj(t) is integrable since 0,j(t)(Xj(t))h is square

integrable, we obtain from (4.1) that T-  times the last term

of the extreme right hand side of (4.2) tends to A(e) almost

surely as T - - . On the other hand, m.(t) is a martingale

with natural increasing process given by d<m .> = A. (t)dt
tee3There fore



15.

M j tM d t
0

is also a martingale with natural increasing process

If <M.>t =0(t) almost surely as t- ,then by lemma 2,

M.j, /T +0 and hence T -1L T(e) -~ AM0 almost surely as

T -~ - Since from Mi

.ei(t)X it) = ejtxiM + ejtXtot+Yto )

and therefore by (4.1) and Lemma 1, Mj,/T -+ OX(~

almost surely as T -)' o , we obtain the result

The proof for the convergence of T L~1 (0*) andT

T- %A(0*) uses the same idea. We have from (i)

~.(t{X(t) - .(t) = {0 1 1)(t) + O. )(t)o(t) + o(t)}o(t)

A (2) (t) _- ,() ((t)/t) + AM(t)(1

= JO2)t + X ) J !)tot

I I I

+ 01) t)o 1 ) t '0(t) + 0(t) 10(t)

(2 4 2 (t)o Mt + X t)MOWt + 41 1) M o tM + o(t)
*1 J )

Since X (t) is bounded below, from (ii), 0 4,M i)(t) I

i 1,2 are integrable. By lemma 1 and (4.1), the first term

of the extreme right hand side of (4.3), (4.4), divided by T
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tend to zero as T o .

Finally by a similar argument as above, the second terms

in the extreme right hand side of (4.3) and (4.4) are T o(T) and

the last term in the right hand side of (4.4) divided by T

converge to -J almost surely as T . The proof is com-

pleted.

Remark

Condition (i) of the theorem is introduced for convenience.

The result might hold under weaker conditions. In fact, it

suffices that

{5j(t) - Aj(t)1dt ' Tf {$e'J(t) - e'j(t)}X j(t)dt

0 (t){ j(t) -j(t)}dt ,i = 1,2,

A/ (^ t (i) ^ ' (i) (i
(I) Tt () (t) - W() (t)'X (t))at

0( j JJ J J J

tend to zero almost surely as T o = and

1 T A2 , l T 1 (i) (t), 112 X eiM i( t F (t)dt i = 1,2
0 8Jtk~~t, 0 l~

are bounded almost surely, and condition (ii) to obtain the result.

Condition (i) is also not very restrictive. In case of the

self-exciting process (3.1) with gSjk > 0 , then Xe,.(t) is

bounded below by a ac j I which we assume to be strictly positive.

If we also assume that

ge(t) = supj go(t + h)II

h_ 0

is integrable, then
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A 0 r
11e(t) - e (t)X J < const.J I ge (t - s)I dN (s)0e r

const.Jf 6 (t - s) X dN(s)
j=l

where the last integral is almost surely finite since it has

a finite expectation and converges to zero as t -* by the

monotonous convergence Theorem. In the same way, if ge (t)

is twice differentiable with respect to 8 with derivatives

satisfying the same condition as g,(t) as above, then
(i) - i)

IIx ,Oj Mj6 I(t)lJ , i = 1,2 , tend to zero almost surely as

t -.). 00

Consider now the asymptotic distribution of T-  L (0*)
T

From (4.3), we expect that the above is asymptotically distributed

like

T f r
(4.5) ZT = Tl i j (t)dmj(t)

The asymptotic distribution of ZT can be obtained from

the following result, which is of independent interest.

Lemma 3. Let Mt,At,t >- 0 be a square integrable martingale

with natural increasing process <Mt> satisfying d<M> t = X tdt

Suppose that there is a semi group of shift operator TsS 0 ,

conserving the probability and metrically transitive, such that
ThlA t = A , - M o Th = M - M Then as T

h t t+h t ~~~t+h s+h Thna*

T- MT is asymptoticalLy normal with zero mean and variance EX0

Proof.

Let nT be integers such that AT = T/nT 0 as T
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Set

Y T,j T (M jAT - M(j 1)AT)

Then from the result of Durett and Resnick (1978), as T -

n T
T MT =T M 0+ X Y T,j

j=1

is asymptotically normal with zero mean and variance EX0,1

provided

n T 2
Mi I E{Y T , jA EX0  in probability

nT I~~)T

(ii) E[Y~ 2 1 2] 0 , £> 0
j=lT

To verify (i), observe that the sum in (i) is equal to

1 T ( T ) d t = < > / 1 f T X ( ) _ x ) d
T0 t T T 0 t t

where X (T) = E(X IAAT for jAT -. t < (j + 1) AT Clearly

X t+h = X to Th and E(X t+h JA s+h) =E(XtIAs)oT h .Therefore, as

A T -0 ,

Sup EIX (T) _ Xj 1 Sup EIE(X1IA,_u) -X 1 1 -~ 0
0~t!5T t 0!5u!5AT

Note that X is A t-measurable because this process is predic-

table. Thus, the sum in (i) differs from <M> T/T by a term

tending to 0 in the mean and since <M> T/T -~EX 0  by the metric

transitivity of T h , we obtain the result.

To verify (ii), observe that the YT~j' j 1...,n T have

the same distribution. Put (t) M - MO we are led to verify

that:



19.

n [E (Y2 I AT1 E[E(AT) 1 { (AT >T} ],1TI{YTI > EK TT}

tend to zero as T . This is true if A T 0 sufficiently

slow. Indeed, (A) , 0 : A -< 1 being a positive sub-martingale

is uniformly integrable (Doob, 1953, p. 359), that is:

OL(T) = Sup E[ (A) I{ (A) > ET} 0

0!5 A< 1 >C }

as T . So all we have to do is to choose nT such that

a(T)/A T +0 as T - w .

We now show that the difference between T LT(O*) and

Z , defined by (4.3), (4.5) tend to zero in probability as

Lemma 4. Let Mt, t >_ 0 be a locally integrable martingale

with continuous natural increasing process <M>. Let ht 0,

2if <M>T/h2 + 0 in probability as T ,then so is MT/hT

Proof

Let E > 0 . Define the stopping time 0 t to be the value

of s such that <M > = Ch 2  Then as T
t

P{MT T MT } 0

since P{a < P{<M>T = 
> - h2  0 On the otherhand

T T T

E(M 2 T^O T) = E<M> - E<M> -h
2

TGT TAGCT a T hT

and hence by Tchebycheff inequality

P{IMT/hTI > 6} !5 P{MTAG T MT} + EP2
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from which the result follows.

Theorem 3. Under the condition of Theorem 2 and suppose that

(i) T- (T ^() {Aj (t)
T_ 0t {j(t - Xj(t)}dt , 0

in probability as T - . Then T -  LT(e*) is asymptotically

normal with zero-mean and covariance matrix J given in Theorem 2.

Proof.

Let a be a vector and ZT  be given by (4.5). Then

MT = T a ZT , T - 0 is a martingale with natural increasing

process t r 2
<M Xf{- . () X (s)ds

<Sft  j=l J

since (Lipster and Shiryayev, 1977, p. 269)

M 2 2MsdMs + (AMs) 2
t Jo Ss s~t

t r ( }) 2

2MsdMs + X {4(i) (s)} dN.(s)
0 j=l j
[2MsdMs + r (1) (s)2 dmj(s) + <M>t

j=l J

where the first term of the last expression is a martingale and

the second is a natural process. By Lemma 3, a'ZT is asympto-

tically normal with zero mean and variance a'Ja . On the other

hand, by (i) and Lemma 4 with

A (1) Mt) - i () (t)}dm(t) h, h t = we see that

T-L( I ) (10*) Z - 0 in probability as T . The resultT T

follows.

LA
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Remark

Condition (i) of Theorem 3 is satisfied if, for example,

EI[I) (t)12 is bounded and

A 2
(4.6) f{EXj(t) - \j(t) 12 dt < +-

since by Schwartz inequality, the first absolute moment of the

expression in (i) is bounded by

T- {lA (1) (t)i12 E Ix (t) - X.(t) 12} dt

A

In case of the self exciting process with Xj(t) , X.(t)

given by (3.1), (3.3) we have

(t) - Aj(t) = gc,(t - s)dN.(s)
k TOO -k110 f0

= gjk - s)Ak(S)ds gjk(t - s)dmk(s))
k 1 th L2

Denote by 2 the L2 norm, by the triangular inequality

i (t) - ij(t)1I 2 < f_ Igjk(t - s)HYl ks)l2 ds

+ f g2k(t - s) E{Ak(s) }ds]
k _

Note that as in the proof of Theorem 3, the martingale Ms

defined by dMs = X-gk(t - s)dmk(s) has the natural increasing

process given by d<M>s = k gjk(t - Ps) ds Therefore,

the process X k(t) being stationary

k4

- Xj(t)I"2 dt

_< const, k:f[ I'gj(S) ds + {fg 2 jk(S~ds} Jdt
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Observe that

(4.7) f0ftIgjk(S) Id s -<f tlgjk(t) Idr

and, by Schwartz inequality, for any positive function h on

(0,o) which integrates to one

J {J gjk(s)ds} dt { 1 g2k(s)ds at}
0 tik0 ( t t k

0 {tjk (t) /h (t) }d r

Take h(t) - t- 1- a , a > 0 Then (4.6) holds if the right hand

size of (4.7) and t +a t2+  g2k(t)dt are finite. In the same way

one can show that j0 as t if the

jk
are bounded if the above conditions hold and X j (t) are bounded

below. Thus condition (i) of the Theorem is not restrictive.

5. Asymptotic Properties of the Maximum Likelihood Estimator

We are interested in the asymptotic properties of the esti-

mate 0T P which maximize LT  in 0 . We shall use this general

result for which the proof is quite standard.

kTheorem 4. 1. Let AT be a random function on 0 c R

satisfying

(i) AT (8) - A() almost surely as T + , with A being

continuous, admitting a unigue maximu 0*

(ii) For any e # 0*
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lim sup Sup {AT () - A T (e) } - 0 a.s.
T 4oD eU(e) T

as the neighborhood U() of 0 shrinks to 0

Then any 0 realising the maximum of A on a compact
T T

C of 0 containing e* , converges almost surely to 0* as

T - .

2. Suppose that 0* is an interior point of 0 and A admits

continuous first and second derivatives with respect to e

denoted by the vector AT1) and the matrix AT2  , satisfying

(iii) As T c , A (2 ) (0*) -J in probability andT

VTA (l) (0) is asymptotically normal with zero mean and covariance

matrix J

(iv) For every c > 0

lir inf P{ IA(2 ) (0) - A(2) (0*)Il < E , VOEU(e*)
T T

increases to 1 as the neighborhood U(6*) of e* shrinks to

0* .
A

Then OT of 1) is asymptotically normal with mean 0* and

covariance matrix T -1j . Moreover, if 0T is T -consistent,

that is the distributions of V--(0T - 0*) are tight, then
OT - {0T - AT2 (aT)- A (T)} 0 in probability as T

We apply the above results with AT = T- 1LT . By Theorem 2,

condition (i) is satisfied except the continuity of A(0) , which

we shall assume. To see that 0* realises the maximum of A(O)

write

r 1
A(O) - A(O*) = Y[E Log{A 0 ,i (0)A (0)}A (0) + A (0) - A0  (0)]

j=l
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and note that log x !5 x - 1 with equality if and only if

x = 1 , we get A(M) 5 A(B*) with equality if and only if

X 61(0) = X.j(0) almost surely, implying, by stationarity

X j(t) = X.(t) almost surely. If the parametrization is

such that for 0# e , X Oj(t) is not equal to X0 j (t)

for all t , almost surely, then 0* is the unique maximum

of A .

Theorems 2 and 3 show that condition (iii) is satisfied.

So all we need is to verify conditions (ii) and (iv). This

would require rather strong assumptions on X9(t) and X (t) .

A sufficient set of assumptions is

AO: For any compact C of 0 , there is a c > 0

such that X, 4 (t) >c almost surely for a1! t,

all 0 c C

Al: For any compact C of 0 -

A
tlim SuPC Ix61 (t) - Xe0 j(t)I = 0 a.s.

E {Sup 0 2 (t))}X (t) <
tCe ECc

A2: For some compact neighborhood U of 0*
11A(i) (i)(t I = 0 a s.

lim sup l 0'e (t) - AOij(t) = 0 a.s., 1,2,
t-+ e 1u

E[{Sup jIj (2 ) (t) 2 1 X (t) ] < -Oeu ' ,J

E{Sup J J 2) (t)jj <  .

eEU

Theorem 5. Under the assumptions A0, Al condition (ii) of
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Theorem 4 is satisfied, and under the assumptions AO, A2,

condition (iv) of Theorem 4 is satisfied.

Proof.

Let U(e) be a compact neighborhood of 0 . Then from

(4.2),

-l1r CT A
Sup T- L(W) !5 T-  [{ Sup .(t) }dN. (t)

oU(0) T j=l 0 0'EU(8) "1

-Inf X8 Oj(t)}dt]
0 'CU (e) '

By the same argument as in the proof of Theorem 2, the above

right hand side is seen to converge almost surely as T to

r
I[EEC{ Sup (t)}Xj(t)] - E{ Inf X .(t)}]

j=l 'U(e) "' 0', O ) 'J

By the monotonous convergence theorem, as U(6) shrinks to e

the above expression converges to A(O) and hence

lim sup { Sup T- L (e')} - A(O) a.s.
T-0 eEU(o) T

which gives the result.

To verify condition (iv) of Theorem 4, from (4.4) observe

that T-1IL ( 2 ) (e) - L ( 2 ) (8*) is bounded for all 0 E U by

T T

T [ {Sup IIA 29(t) - 4j2 (t)II}dN.(t)
j=1 0 OEU

+f {Sup 1 ()(t 2
o e u ,X t) J j!2  (t)II }dt]

Again, by a similar argument, the above expression converges

almost surely as T - co to
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r (2 (2)(tJ}.)1 E Sup I1 2'jt) (tIX()
j=l ae~u

+ E{SupII X (2 ) (t) - 2 (t)I}
OecU

Note that we have used the fact that

{Sup II4 (2) (t) - .(t)I } 7 (t) , sup II 8 (t) - ~(t)f
efU OELI eJ

are square integrable and integrable which follows easily from

A2. Again, by the monotonous convergence Theorem, the above

expectations converge to zero as U shrinks to 0* .The proof

is completed.
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